Diferencia entre revisiones de «Bacteria»

De Enciclopedia Médica Ferato
 
(No se muestran 3 ediciones intermedias del mismo usuario)
Línea 46: Línea 46:


===Estructura de superficie y de cubierta===
===Estructura de superficie y de cubierta===
[[Imagen:20080225_mgb_Estructura bacteriana_.jpg|right]]
*La cápsula no es constante. Es una capa gelatinomucosa de tamaño y composición variables que juega un papel importante en las bacterias patógenas.
*La cápsula no es constante. Es una capa gelatinomucosa de tamaño y composición variables que juega un papel importante en las bacterias patógenas.
*Los cilios, o flagelos, no existen más que en ciertas especies. Filamentosos y de longitud variable, constituyen los órganos de locomoción. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran pili, que son apéndices más pequeños que los cilios y que tienen un papel fundamental en genética bacteriana.
*Los cilios, o flagelos, no existen más que en ciertas especies. Filamentosos y de longitud variable, constituyen los órganos de locomoción. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran pili, que son apéndices más pequeños que los cilios y que tienen un papel fundamental en genética bacteriana.
Línea 163: Línea 164:
En el suelo, los microorganismos que habitan la rizosfera (la zona que incluye la superficie de la raíz y la tierra que se adhiere a ella) realizan la fijación de nitrógeno, convirtiendo el nitrógeno atmosférico (en estado gaseoso) en compuestos nitrogenados. Esto proporciona a muchas plantas, que no pueden fijar el nitrógeno por sí mismas, una forma fácilmente absorbible de nitrógeno.
En el suelo, los microorganismos que habitan la rizosfera (la zona que incluye la superficie de la raíz y la tierra que se adhiere a ella) realizan la fijación de nitrógeno, convirtiendo el nitrógeno atmosférico (en estado gaseoso) en compuestos nitrogenados. Esto proporciona a muchas plantas, que no pueden fijar el nitrógeno por sí mismas, una forma fácilmente absorbible de nitrógeno.


Muchas otras bacterias se encuentran como simbiontes en seres humanos y en otros organismos. Por ejemplo, en el tracto digestivo proliferan unas mil especies bacterianas. Sintetizan vitaminas tales como ácido fólico, vitamina K y biotina. También fermentan los carbohidratos complejos indigeribles y convierten las proteínas de la leche en ácido láctico (por ejemplo, [[Lactobacillus]]). Además, la presencia de esta flora intestinal inhibe el crecimiento de bacterias potencialmente patógenas (generalmente por exclusión competitiva). Muchas veces estas bacterias beneficiosas se venden como suplementos dietéticos probióticos.
Muchas otras bacterias se encuentran como simbiontes en seres humanos y en otros organismos. Por ejemplo, en el tracto digestivo proliferan unas mil especies bacterianas. Sintetizan vitaminas tales como ácido fólico, vitamina K y biotina. También fermentan los carbohidratos complejos indigeribles y convierten las proteínas de la leche en ácido láctico (por ejemplo, [[Lactobacillus]]). Además, la presencia de esta flora intestinal inhibe el crecimiento de bacterias potencialmente patógenas (generalmente por exclusión competitiva). Muchas veces estas bacterias beneficiosas se venden como suplementos dietéticos [[probióticos]].


===Patógenos===
===Patógenos===
Las bacterias patógenas son una de las principales causas de las [[enfermedades]] y de la mortalidad humana, causando infecciones tales como el [[tétanos]], la [[fiebre tifoidea]], la [[difteria]], la [[sífilis]], el [[cólera]], intoxicaciones alimentarias, la [[lepra]] y la [[tuberculosis]]. Hay casos en los que la etiología o causa de una enfermedad conocida se descubre solamente después de muchos años, como fue el caso de la [[úlcera péptica]] y [[Helicobacter pylori]]. Las enfermedades bacterianas son también importantes en la agricultura y en la ganadería, donde existen multitud de enfermedades como por ejemplo la mancha de la hoja, la plaga de fuego, la enfermedad de Johne, la mastitis, la salmonela y el carbunco.
Las bacterias patógenas son una de las principales causas de las [[enfermedades]] y de la mortalidad humana, causando infecciones tales como el [[tétanos]], la [[fiebre tifoidea]], la [[difteria]], la [[sífilis]], el [[cólera]], intoxicaciones alimentarias, la [[lepra]] y la [[tuberculosis]]. Hay casos en los que la etiología o causa de una enfermedad conocida se descubre solamente después de muchos años, como fue el caso de la [[úlcera péptica]] y [[Helicobacter pylori]]. Las enfermedades bacterianas son también importantes en la agricultura y en la ganadería, donde existen multitud de enfermedades como por ejemplo la mancha de la hoja, la plaga de fuego, la enfermedad de Johne, la [[mastitis]], la salmonela y el carbunco.


Cada especie de patógeno tiene un espectro característico de interacciones con sus huéspedes humanos. Algunos organismos, tales como Staphylococcus o Streptococcus, pueden causar infecciones de la piel, pulmonía, meningitis e incluso sepsis, una respuesta inflamatoria sistémica que produce shock, vasodilatación masiva y muerte.[111] Sin embargo, estos organismos son también parte de la flora humana normal y se encuentran generalmente en la piel o en la nariz sin causar ninguna enfermedad.
Cada especie de patógeno tiene un espectro característico de interacciones con sus huéspedes humanos. Algunos organismos, tales como Staphylococcus o Streptococcus, pueden causar infecciones de la piel, pulmonía, meningitis e incluso sepsis, una respuesta inflamatoria sistémica que produce shock, vasodilatación masiva y muerte.[111] Sin embargo, estos organismos son también parte de la flora humana normal y se encuentran generalmente en la piel o en la nariz sin causar ninguna enfermedad.
Línea 191: Línea 192:
*Las cariofanales.
*Las cariofanales.
*Las mixobacteriales.
*Las mixobacteriales.
{{veasetambien}}
*[[Virus]]
*[[Célula]]
{{avisomédico}}
[[Categoría:Glosario]]

Revisión actual del 20:01 28 ene 2011

20080225 mgb Bacteria .jpg

Son seres generalmente unicelulares que pertenecen al grupo de los protistos inferiores. Son células de tamaño variable cuyo límite inferior está en las 0,2m y el superior en las 50m ; sus dimensiones medias oscilan entre 0,5 y 1m .

Las bacterias tienen una estructura menos compleja que la de las células de los organismos superiores: son células procariotas (su núcleo está formado por un único cromosoma y carecen de membrana nuclear). Igualmente son muy diferentes a los virus, que no pueden desarrollarse más dentro de las células y que sólo contienen un ácido nucleico.

Las bacterias juegan un papel fundamental en la naturaleza y en el hombre: la presencia de una flora bacteriana normal es indispensable, aunque gérmenes son patógenos. Análogamente tienen un papel importante en la industria y permiten desarrollar importantes progresos en la investigación, concretamente en fisiología celular y en genética.

El examen microscópico de las bacterias no permite identificarlas, ya que existen pocos tipos morfológicos, cocos (esféricos), bacilos (bastón), espirilos (espiras). El estudio mediante la microscopia óptica y electrónica de las bacterias revela la estructura de éstas.

Morfología bacteriana

Las bacterias presentan una amplia variedad de tamaños y formas. La mayoría presentan un tamaño 10 veces menor que el de las células eucariotas, es decir, entre 0,5 y 5 micrómetros. Sin embargo, algunas especies como Thiomargarita namibiensis y Epulopiscium fishelsoni llegan a alcanzar los 0,5 mm, lo cual las hace visibles al ojo desnudo.

En el otro extremo se encuentran bacterias más pequeñas conocidas, entre las que cabe destacar las pertenecientes al género Mycoplasma, las cuales llegan a medir solo 0,3 micrómetros, es decir, tan pequeñas como los virus más grandes.

La forma de las bacterias es muy variada y, a menudo, una misma especie adopta distintos tipos morfológicos, lo que se conoce como pleomorfismo. De todas formas, podemos distinguir tres tipos fundamentales de bacterias:

  • Coco (del griego kókkos, grano): de forma esférica.
  • Diplococo: cocos en grupos de dos.
  • Tetracoco: cocos en grupos de cuatro.
  • Estreptococo: cocos en cadenas.
  • Estafilococo: cocos en agrupaciones irregulares o en racimo.
  • Bacilo (del latín baculus, varilla): en forma de bastoncillo.
  • Formas helicoidales:
    • Vibrio: ligeramente curvados y en forma de coma.
    • Espirilo: en forma helicoidal rígida.
    • Espiroqueta: en forma de tirabuzón (helicoidal flexible).

Algunas especies presentan incluso formas tetraédricas o cúbicas. Esta amplia variedad de formas es determinada en última instancia por la composición de la pared celular y el citoesqueleto, siendo de vital importancia, ya que puede influir en la capacidad de la bacteria para adquirir nutrientes, unirse a superficies o moverse en presencia de estímulos.

A continuación se muestran diferentes especies con diversos patrones de asociación:

  • Neisseria gonorrhoeae en forma diploide (por pares).
  • Streptococcus en forma de cadenas.
  • Staphylococcus en forma de racimos.
  • Actinobacteria en forma de filamentos. Dichos filamentos suelen rodearse de una vaina que contiene multitud de células individuales, pudiendo llegar a ramificarse, como el género Nocardia, adquiriendo así el aspecto del micelio de un hongo.

Las bacterias presentan la capacidad de anclarse a determinadas superficies y formar un agregado celular en forma de capa denominado biofilm, los cuales pueden tener un grosor que va desde unos pocos micrómetros hasta medio metro.

Estos biofilms pueden congregar diversas especies bacterianas, tanto protistas como arqueas, y se caracterizan por formar un conglomerado de células y componentes extracelulares, alcanzando así un nivel mayor de organización o estructura secundaria denominada microcolonia, a través de la cual existen multitud de canales que facilitan la difusión de nutrientes.

En ambientes naturales tales como el suelo o la superficie de las plantas, la mayor parte de las bacterias se encuentran ancladas a las superficies en forma de biofilms. Dichos biofilms deben ser tenidos en cuenta en las infecciones bacterianas crónicas y en los implantes médicos, ya que las bacterias que forman estas estructuras son mucho más difíciles de erradicar que las bacterias individuales.

Por último, cabe destacar un tipo de morfología más compleja aún, observable en algunos microorganismos del género Myxobacteria. Cuando dicha especie se encuentra en un medio escaso en aminoácidos, las bacterias son capaces de detectar a las células de alrededor, en un proceso conocido como quorum sensing, en el cual todas las células migran hacia las demás y agregan, dando lugar a cuerpos fructíferos que pueden alcanzar los 0,5 mm de longitud y contener unas 100.000 células.

Una vez formada dicha estructura las bacterias son capaces de llevar a cabo diferentes funciones, es decir, se diferencian, alcanzando así un cierto nivel de organización pluricelular. Por ejemplo, entre 1 y 10 células migran a la parte superior del cuerpo fructífero y, una vez allí, se diferencian para dar lugar a un tipo de células latentes denominadas myxosporas, las cuales son más resistentes a la desecación y, en general, a condiciones ambientales adversas.

Estructura

Estructura de superficie y de cubierta

20080225 mgb Estructura bacteriana .jpg
  • La cápsula no es constante. Es una capa gelatinomucosa de tamaño y composición variables que juega un papel importante en las bacterias patógenas.
  • Los cilios, o flagelos, no existen más que en ciertas especies. Filamentosos y de longitud variable, constituyen los órganos de locomoción. Según las especies, pueden estar implantados en uno o en los dos polos de la bacteria o en todo su entorno. Constituyen el soporte de los antígenos "H". En algunos bacilos gramnegativos se encuentran pili, que son apéndices más pequeños que los cilios y que tienen un papel fundamental en genética bacteriana.
  • La pared que poseen la mayoría de las bacterias explica la constancia de su forma. En efecto, es rígida, dúctil y elástica. Su originalidad reside en la naturaleza química del compuesto macromolecular que le confiere su rigidez. Este compuesto, un mucopéptido, está formado por cadenas de acetilglucosamina y de ácido murámico sobre las que se fijan tetrapéptidos de composición variable. Las cadenas están unidas por puentes peptídicos. Además, existen constituyentes propios de las diferentes especies de la superficie.
  • La diferencia de composición bioquímica de las paredes de dos grupos de bacterias es responsable de su diferente comportamiento frente a un colorante formado por violeta de genciana y una solución yodurada (coloración Gram). Se distinguen las bacterias grampositivas (que tienen el Gram después de lavarlas con alcohol) y las gramnegativas (que pierden su coloración).
  • Se conocen actualmente los mecanismos de la síntesis de la pared. Ciertos antibióticos pueden bloquearla. La destrucción de la pared provoca una fragilidad en la bacteria que toma una forma esférica (protoplasto) y estalla en medio hipertónico (solución salina con una concentración de 7 g. de NaCI por litro).
  • La membrana citoplasmática, situada debajo de la pared, tiene permeabilidad selectiva frente a las sustancias que entran y salen de la bacteria. Es soporte de numerosas enzimas, en particular las respiratorias. Por último, tiene un papel fundamental en la división del núcleo bacteriano. Los mesosomas, repliegues de la membrana, tienen una gran importancia en esta etapa de la vida bacteriana.

Estructuras internas

  • El núcleo lleva el material genético de la bacteria; está formado por un único filamento de ácido desoxirribonucleico (ADN) apelotonado y que mide cerca de 1 mm de longitud (1000 veces el tamaño de la bacteria).
  • Los ribosomas son elementos granulosos que se hallan contenidos en el citoplasma bacteriano; esencialmente compuestos por ácido ribonucleico, desempeñan un papel principal en la síntesis proteica.
  • El citoplasma, por último, contiene inclusiones de reserva.

Metabolismo

En contraste con los organismos superiores, las bacterias exhiben una gran variedad de tipos metabólicos. La distribución de estos tipos metabólicos dentro de un grupo de bacterias se ha utilizado tradicionalmente para definir su taxonomía, pero estos rasgos no corresponden a menudo con las clasificaciones genéticas modernas.

El metabolismo bacteriano se clasifica en base a tres criterios importantes:

  • Según la fuente de carbono, las bacterias se pueden clasificar como:
    • Heterótrofas, cuando usan compuestos orgánicos.
    • Autótrofas, cuando el carbono celular se obtiene mediante la fijación del dióxido de carbono.

Las bacterias autótrofas típicas son las cyanobacterias fotosintéticas, las bacterias verdes del azufre y algunas bacterias púrpura. Pero hay también muchas otras especies quimiolitotrofas, por ejemplo, las bacterias nitrificantes y oxidantes del azufre.

  • Según la fuente de energía, las bacterias pueden ser:
    • Fototrofas, cuando emplean la luz a través de la fotosíntesis.
    • Quimiotrofas, cuando obtienen energía a partir de sustancias químicas que son oxidadas principalmente a expensas del oxígeno o de otros receptores de electrones alternativos (respiración aerobia/anaerobia).
  • Finalmente, las bacterias también se pueden clasificar como:
    • Litotrofas, si utilizan como donadores de electrones compuestos inorgánicos.
    • Organotrofas, si utilizan como donadores de electrones compuestos orgánicos.

Los organismos quimiotrofos usan donadores de electrones para la conservación de energía (durante la respiración aerobia/anaerobia o durante la fermentación) y para las reacciones biosintéticas (por ejemplo, para la fijación del dióxido de carbono), mientras que los organismos fototrofos los utilizan únicamente con propósitos biosintéticos.

Los organismos que respiran usan compuestos químicos como fuente de energía, tomando electrones del sustrato reducido y transfiriéndolos a un receptor terminal de electrones en una reacción redox. Esta reacción desprende energía que se puede utilizar para sintetizar ATP y así mantener activo el metabolismo. En los organismos aerobios, el oxígeno se utiliza como receptor de electrones. En los organismos anaerobios se utilizan como receptores de electrones otros compuestos inorgánicos tales como los nitratos, los sulfatos o el dióxido de carbono. Esto conduce a que se lleven a cabo los importantes procesos biogeoquímcos de la desnitrificación, la reducción del sulfato y la acetogénesis, respectivamente.

Otra posibilidad de los quimiotrofos en ausencia de receptores de electrones es la fermentación. En la fermentación, los electrones tomados de los sustratos reducidos se transfieren a intermediarios oxidados para generar productos de fermentación reducidos (por ejemplo, lactato, etanol, hidrógeno, butirato). La fermentación es posible porque el contenido de energía de los sustratos es mayor que el de los productos, lo que permite que los organismos sinteticen ATP y mantengan activo su metabolismo.

Estos procesos son también importantes en las respuestas biológicas a la contaminación. Por ejemplo, las bacterias reductoras de sulfato son en gran parte responsables de la producción de formas altamente tóxicas de mercurio (metil- y dimetil-mercurio) en el ambiente. Los organismos anaerobios utilizan la fermentación para generar energía, secretando subproductos metabólicos (tales como el etanol en la elaboración de la cerveza) como productos de desecho. Los anaerobios facultativos pueden elegir entre la fermentación y diversos receptores terminales de electrones dependiendo de las condiciones ambientales en las cuales se encuentren.

Las bacterias litotrofas pueden utilizar compuestos inorgánicos como fuente de energía. Los donadores de electrones inorgánicos más comunes son el hidrógeno, el monóxido de carbono, el amoniaco (que conduce a la nitrificación), el hierro ferroso y otros iones de metales reducidos, así como varios compuestos de azufre reducidos. En determinadas ocasiones, las bacterias metanotrofas pueden usar gas metano como fuente de electrones y como sustrato simultáneamente, para el anabolismo del carbono. En la fototrofía y quimiolitotrofía aerobias, se utiliza el oxígeno como receptor terminal de electrones, mientras que bajo condiciones anaeróbicas se utilizan compuestos inorgánicos. La mayoría de los organismos litotrofos son autótrofos, mientras que los organismos organotrofos son heterótrofos.

Además de la fijación del dióxido de carbono mediante la fotosíntesis, algunas bacterias también fijan el gas nitrógeno usando la encima nitrogenasa. Esta característica es muy importante a nivel ambiental y se puede encontrar en bacterias de casi todos los tipos metabólicos enumerados anteriormente, aunque no es universal.

Movimiento

Las bacterias pueden moverse mediante flagelos, deslizamientos, contracciones (twitching) o por cambios en la flotabilidad. En un único grupo de bacterias, las espiroquetas, se presentan unas estructuras similares a flagelos, localizadas entre dos membranas en el espacio periplasmático, que se denominan filamentos axiales. Estos tienen un cuerpo helicoidal distintivo que gira alrededor mientras la bacteria se mueve. En el movimiento de tipo twitching, la bacteria usa su pilus de tipo IV como gancho de ataque, primero extendiéndolo, anclándolo y después contrayéndolo con una fuerza notable (>80 pN).

Según el número y disposición de los flagelos en la superficie de la bacteria, se distinguen los siguientes tipos:

  • Un solo flagelo (monotrico).
  • Un flagelo en cada extremo (anfitrico).
  • Grupos de flagelos en cada extremo (lofotrico).
  • Flagelos distribuidos sobre toda la superficie de la célula (peritricos).

Los flagelos bacterianos son la estructura de movilidad mejor comprendida de cualquier organismo. Es una estructura rotatoria propulsada por un motor en la base que utiliza como energía un gradiente electroquímico a través de la membrana. Los flagelos están compuestos por cerca de 20 proteínas, con aproximadamente otras 30 proteínas para su regulación y coordinación. Muchas bacterias (tales como E. coli) tienen dos tipos de movimiento: hacia delante (natación) y "dando tumbos". Este último permite que la bacteria cambie de dirección al azar en un espacio tridimensional.

Las bacterias móviles pueden presentar movimientos de atracción o repulsión determinados por diferentes estímulos. Estos comportamientos son denominados taxis, e incluyen diversos tipos como:

  • Quimiotaxis.
  • Fototaxis.
  • Magnetotaxis.

En el peculiar grupo de las Myxobacterias, las células individuales se mueven juntas formando ondas de células, que terminarán diferenciándose y transformándose en los cuerpos fructíferos característicos de este género, que contienen esporas. El movimiento de las myxobacterias se produce solamente sobre superficies sólidas, en contraste con E. coli, que es móvil tanto en medios líquidos como en medios sólidos.

Varias especies de Listeria y Shigella se mueven dentro de las células huésped apropiándose y utilizando su citoesqueleto, el cual normalmente se utilizaría para mover los orgánulos dentro de la célula. Mediante la polimerización de actina, se forma una especie de cola en un extremo de la bacteria, que la empuja a través del citoplasma de la célula huésped.

División celular bacteriana

En las bacterias, el aumento en el tamaño de las células (crecimiento) y la reproducción por división celular están íntimamente ligadas, como en la mayor parte de los organismos unicelulares.

Las bacterias crecen hasta un tamaño fijo y después se reproducen por fisión binaria, una forma de reproducción asexual. En condiciones apropiadas, una bacteria Gram-positiva puede dividirse cada 20 – 30 minutos y una Gram-negativa cada 15 – 20 minutos, y en alrededor de 16 horas su número puede ascender a unos 5.000 millones (aproximadamente el número de personas que habitan la Tierra).

Bajo condiciones óptimas, algunas bacterias pueden crecer y dividirse extremadamente rápido, tanto como cada 9,8 minutos. En la división celular se producen dos células hijas idénticas. Algunas bacterias, todavía reproduciéndose asexualmente, forman estructuras reproductivas más complejas que facilitan la dispersión de las células hijas recién formadas. Ejemplos incluyen la formación de cuerpos fructíferos (esporangios) en Myxobacteria, la formación de hifas en Streptomyces y la gemación. En la gemación una célula forma una protuberancia que a continuación se separa y produce una nueva célula hija.

Por otro lado, cabe destacar un tipo de reproducción sexual en bacterias, denominada parasexualidad bacteriana. En este caso, las bacterias son capaces de intercambiar material genético en un proceso conocido como conjugación.

Durante el proceso una bacteria donante y una bacteria receptora llevan a cabo un contacto mediante pelos sexuales huecos o pili, a través de los cuales se transfiere una pequeña cantidad de ADN independiente o plásmido conjugativo. El mejor conocido es el plásmido F de E. coli, que además puede integrarse en el cromosoma bacteriano. En este caso recibe el nombre de episoma, y en la transferencia arrastra parte del cromosoma bacteriano. Se requiere que exista síntesis de ADN para que se produzca la conjugación. La replicación se realiza al mismo tiempo que la transferencia.

Espora bacteriana

Ciertas bacterias grampositivas pueden sintetizar un órgano de resistencia que les permite sobrevivir en condiciones más desfavorables, y se transforma de nuevo en una forma vegetativa cuando las condiciones del medio vuelven a ser favorables.

Esta espora, bien estudiada gracias a la microscopia electrónica, contiene la información genética de la bacteria la cual está protegida mediante dos cubiertas impermeables. Se caracteriza por su marcado estado de deshidratación y por la considerable reducción de actividades metabólicas, lo que contrasta con su riqueza enzimática.

La facultad de esporular está sometida a control genético y ciertos gérmenes pueden perderla. La germinación de las esporas es siempre espontánea. Da lugar al nacimiento de una bacteria idéntica al germen que había esporulado.

Desarrollo bacteriano

El crecimiento bacteriano sigue 3 fases. Cuando una población bacteriana se encuentra en un nuevo ambiente con elevada concentración de nutrientes que le permiten crecer necesita un período de adaptación a dicho ambiente.

  • Esta primera fase se denomina fase de adaptación o fase lag y conlleva un lento crecimiento, donde las células se preparan para comenzar un rápido crecimiento, y una elevada tasa de biosíntesis de las proteínas necesarias para ello, como ribosomas, proteínas de membrana, etc.
  • La segunda fase de crecimiento se denomina fase exponencial, ya que se caracteriza por el crecimiento exponencial de las células. La velocidad de crecimiento durante esta fase se conoce como la tasa de crecimiento k y el tiempo que tarda cada célula en dividirse como el tiempo de generación g. Durante esta fase, los nutrientes son metabolizados a la máxima velocidad posible, hasta que dichos nutrientes se agoten, dando paso a la siguiente fase.
  • La tercera fase de crecimiento se denomina fase estacionaria y se produce como consecuencia del agotamiento de los nutrientes en el medio. En esta fase las células reducen drásticamente su actividad metabólica y comienzan a utilizar como fuente energética aquellas proteínas celulares no esenciales. La fase estacionaria es un período de transición desde el rápido crecimiento a un estado de respuesta a estrés, en el cual se activa la expresión de genes involucrados en la reparación del ADN, en el metabolismo antioxidante y en el transporte de nutrientes.

Genética bacteriana

La mayoría de las bacterias disponen de un único cromosoma circular cuyo tamaño puede ir desde sólo 160.000 pares de bases en la bacteria endosimbionte Candidatus Carsonella ruddii a los 12.200.000 pares de bases de la bacteria del suelo Sorangium cellulosum.

Las espiroquetas del género Borrelia son una notable excepción a esta regla pues, por ejemplo, Borrelia burgdorferi, la causa de la enfermedad de Lyme, contiene un único cromosoma lineal.

Las bacterias pueden también presentar plásmidos, pequeñas móleculas extra-cromosómicas de ADN que pueden contener genes responsables de la resistencia a los antibióticos o factores de virulencia. Otro tipo de ADN bacteriano proviene de la integración de material genético de virus (bacteriófagos).

Existen muchos tipos de bacteriófagos, algunos simplemente infectan y rompen las células huésped bacterianas, mientras que otros se insertan en el cromosoma bacteriano. Un bacteriófago puede insertar genes en la bacteria y contribuir a su fenotipo. Por ejemplo, en la evolución de Escherichia coli O157:H7 y Clostridium botulinum, los genes tóxicos aportados por un bacteriófago convirtieron a una inofensiva bacteria ancestral en un patógeno letal.

Las bacterias, como organismos asexuales que son, heredan copias idénticas de genes, es decir, son clones. Sin embargo, todas las bacterias pueden evolucionar por la selección de cambios en su ADN debidos a:

  • Las mutaciones provienen de errores durante la réplica del ADN o por exposición a agentes mutagénicos. Las tasas de mutación varían ampliamente entre las diversas especies de bacterias e incluso entre diferentes clones de una misma especie de bacteria.
  • Los cambios genéticos en los genomas bacterianos se producen bien por mutaciones ocurridas al azar durante la replicación, bien por mutaciones producidas por el estrés, en donde los genes implicados en algún proceso que limita el crecimiento tienen una mayor tasa de mutación.

Las bacterias también pueden transferirse material genético entre células. Esto puede realizarse de tres formas principalmente:

  • En primer lugar, las bacterias pueden recoger ADN exógeno del ambiente en un proceso denominado transformación.
  • En segundo lugar los genes también se pueden transferir por un proceso de transducción mediante el cual un bacteriófago introduce ADN extraño en el cromosoma bacteriano.
  • El tercer método de transferencia de genes es por conjugación bacteriana, en donde el ADN se transfiere a través del contacto directo (por medio de un pilus) entre células.

Esta adquisición de genes de otras bacterias o del ambiente se denomina transferencia de genes horizontal y puede ser común en condiciones naturales. La transferencia de genes es especialmente importante en la resistencia a los antibióticos, pues permite una rápida diseminación de los genes responsables de dicha resistencia entre diferentes patógenos.

Interacciones

A pesar de su aparente simplicidad, las bacterias pueden formar asociaciones complejas con otros organismos. Estas asociaciones simbióticas se pueden clasificar como parasitismo, mutualismo y comensalismo.

Comensales

Debido a su pequeño tamaño, las bacterias comensales son ubicuas y crecen sobre animales y plantas exactamente igual a como crecerían sobre cualquier otra superficie. Así, por ejemplo, grandes poblaciones de estos organismos son las causantes del mal olor corporal y su crecimiento puede verse aumentado con el calor y el sudor.


Mutualistas

Ciertas bacterias forman asociaciones íntimas con otros organismos, que les son imprescindibles para su supervivencia. Una de estas asociaciones mutualistas es la transferencia de hidrógeno entre especies.

Se produce entre grupos de bacterias anaerobias que consumen ácidos orgánicos tales como ácido butírico o ácido propiónico y producen hidrógeno, y las archaea metanógenas que consumen dicho hidrógeno. Las bacterias en esta asociación no pueden consumir los ácidos orgánicos cuando el hidrógeno se acumula a su alrededor. Solamente la asociación íntima con las archaea mantiene una concentración de hidrógeno lo bastante baja para permitir que las bacterias crezcan.

En el suelo, los microorganismos que habitan la rizosfera (la zona que incluye la superficie de la raíz y la tierra que se adhiere a ella) realizan la fijación de nitrógeno, convirtiendo el nitrógeno atmosférico (en estado gaseoso) en compuestos nitrogenados. Esto proporciona a muchas plantas, que no pueden fijar el nitrógeno por sí mismas, una forma fácilmente absorbible de nitrógeno.

Muchas otras bacterias se encuentran como simbiontes en seres humanos y en otros organismos. Por ejemplo, en el tracto digestivo proliferan unas mil especies bacterianas. Sintetizan vitaminas tales como ácido fólico, vitamina K y biotina. También fermentan los carbohidratos complejos indigeribles y convierten las proteínas de la leche en ácido láctico (por ejemplo, Lactobacillus). Además, la presencia de esta flora intestinal inhibe el crecimiento de bacterias potencialmente patógenas (generalmente por exclusión competitiva). Muchas veces estas bacterias beneficiosas se venden como suplementos dietéticos probióticos.

Patógenos

Las bacterias patógenas son una de las principales causas de las enfermedades y de la mortalidad humana, causando infecciones tales como el tétanos, la fiebre tifoidea, la difteria, la sífilis, el cólera, intoxicaciones alimentarias, la lepra y la tuberculosis. Hay casos en los que la etiología o causa de una enfermedad conocida se descubre solamente después de muchos años, como fue el caso de la úlcera péptica y Helicobacter pylori. Las enfermedades bacterianas son también importantes en la agricultura y en la ganadería, donde existen multitud de enfermedades como por ejemplo la mancha de la hoja, la plaga de fuego, la enfermedad de Johne, la mastitis, la salmonela y el carbunco.

Cada especie de patógeno tiene un espectro característico de interacciones con sus huéspedes humanos. Algunos organismos, tales como Staphylococcus o Streptococcus, pueden causar infecciones de la piel, pulmonía, meningitis e incluso sepsis, una respuesta inflamatoria sistémica que produce shock, vasodilatación masiva y muerte.[111] Sin embargo, estos organismos son también parte de la flora humana normal y se encuentran generalmente en la piel o en la nariz sin causar ninguna enfermedad.

Otros organismos causan invariablemente enfermedades en los seres humanos. Por ejemplo, el género Rickettsia, que son parásitos intracelulares obligados capaces de crecer y reproducirse solamente dentro de las células de otros organismos. Una especie de Rickettsia causa el tifus, mientras que otra ocasiona la fiebre de las Montañas Rocosas. Chlamydiae, otro filo de parásitos obligados intracelulares, contiene especies que causan pulmonía, infecciones urinarias y pueden estar implicadas en enfermedades cardíacas coronarias. Finalmente, ciertas especies tales como Pseudomonas aeruginosa, Burkholderia cenocepacia y Mycobacterium avium son patógenos oportunistas y causan enfermedades principalmente en las personas que sufren inmunosupresión o fibrosis quística.

Las infecciones bacterianas se pueden tratar con antibióticos, que se clasifican como bactericidas, si matan bacterias, o como bacterioestáticos, si solo detienen el crecimiento bacteriano. Existen muchos tipos de antibióticos y cada tipo inhibe un proceso que difiere en el patógeno con respecto al huésped.

Ejemplos de antibióticos de toxicidad selectiva son el cloranfenicol y la puromicina, que inhiben el ribosoma bacteriano, pero no el ribosoma eucariota que es estructuralmente diferente. Los antibióticos se utilizan para tratar enfermedades humanas y en la ganadería intensiva para promover el crecimiento animal. Esto último puede contribuir al rápido desarrollo de la resistencia antibiótica de las poblaciones bacterianas.

Las infecciones se pueden prevenir con medidas antisépticas tales como la esterilización de la piel antes de las inyecciones y con el cuidado apropiado de los catéteres. Los instrumentos quirúrgicos y dentales también son esterilizados para prevenir la contaminación e infección por bacterias. Los desinfectantes tales como la lejía se utilizan para matar bacterias u otros patógenos que se depositan sobre las superficies y así prevenir la contaminación y reducir el riesgo de infección.

Clasificación de las bacterias

La identificación de las bacterias es tanto más precisa cuanto mayor es el número de criterios utilizados. Esta identificación se realiza a base de modelos, agrupados en familias y especies en la clasificación bacteriológica. Las bacterias se reúnen en 11 órdenes:

  • Las eubacteriales, esféricas o bacilares, que comprenden casi todas las bacterias patógenas y las formas fotótrofas.
  • Las pseudomonadales, orden dividido en 10 familias entre las que cabe citar las Pseudomonae y las Spirillacae.
  • Las espiroquetales (treponemas, leptospiras).
  • Las actinomicetales (micobacterias, actinomicetes).
  • Las rickettsiales.
  • Las micoplasmales.
  • Las clamidobacteriales.
  • Las hifomicrobiales.
  • Las beggiatoales.
  • Las cariofanales.
  • Las mixobacteriales.
40px-Books-aj.svg aj ashton 01.svg.png
Véase También

20px-Star of life2.svg.pngRecuerda que este no es un consultorio médico.

Consulta siempre a tu doctor o profesional médico. La medicina no es una ciencia exacta y pueden existir distintas versiones y opiniones sobre un mismo tema, nosotros no favorecemos ninguna opinión sobre otra, solamente te presentamos las opciones para que hagas tus propias decisiones mejor informado/a. No te automediques.
 
logo_wis_468x60.jpg
Compruébelo aquí