Sinapsis

De Información médica en Ferato, enciclopedia de la salud en español.
(dif) ← Revisión anterior | Revisión actual (dif) | Revisión siguiente → (dif)
20080919 mgb Sinapsis1 .jpg

Bifurcaciones o empalmes a través de los cuales las células nerviosas transmiten sus señales a otras neuronas, a células musculares o a celulas glándulares.

Clasificación

Existen dos tipos de sinapsis, eléctricas y químicas que difieren en su estructura y en la forma en que transmiten el impulso nervioso.

  • Sinapsis eléctricas: Corresponden a uniones de comunicación entre las membranas plasmáticas de los terminales presináptico y postsinápticos, las que al adoptar la configuración abierta permiten el libre flujo de iones desde el citoplasma del terminal presinático hacia el citoplasma del terminal postsináptico.
  • Sinapsis química: Se caracterizan porque las membranas de los terminales presináptico y postsináptico están engrosadas y las separada la hendidura sinátpica, espacio intercelular de 20-30 nm de ancho. El terminal presináptico se caracteriza por contener mitocondrias y abundantes vesículas sinápticas, que son organelos revestidos de membrana que contienen neurotransmisores.

Mecanismos de exitación e inhibición sinaptica

El líquido extracelular tiene una gran cantidad de concentración de iones de sodio en cambio de la concentración de iones potasio es baja, por otra parte en el citoplasma de la neurona hay una alta concentración de iones potasio y una baja concentración de iones sodio.

En estado de reposo los iones sodio pueden salir de la célula por difusión mediante los canales de la membrana. Unicamente pequeñas cantidades de sodio se difunden a través de la membrana, la cual, en reposo, es poco permeable a estos iones, grandes cantidades de iones sodio penetran en el momento de la conducción de los impulsos la entrada de sodio y la pérdida de potasio intracelular encuentran la oposición de distintas proteínas de la membrana constituyendo la bomba de sodio-potasio.

La bomba la produce la molécula rica en energía, el ATP, para transportar iones a través de la membrana contra un gradiente de concentración, así las concentraciones de iones en el citoplasma se mantienen mediante gasto de energía que se producen de manera importante por consecuencia de la actividad de la bomba.

La diferencia que resulta de las concentraciones de iones producen en la membrana un potencial de reposo, con el interior de la neurona que alcanza aproximadamente menos 70 mV con respecto al exterior (Zimmermann, 1993).

Durante la excitación que se atribuye a una variedad de estímulos ya sean químicos o físicos, se presenta una reducción del potencial de membrana y se dice que dicha membrana se despolariza.

La reducción del potencial se extiende en dirección lateral en la membrana disminuyendo su magnitud con la mayor distancia a partir del punto de iniciación. Este cambio en el grado de potencial, es el tipo único de señalización en las dendritas y en el cuerpo de la neurona (Darnell, 1993).

La producción de estímulos en cantidad e intensidad suficiente puede reducir el potencial de membrana en el segmento inicial del axón hasta 10 a 15 mV. Este es un valor que desencadena la abertura de los canales de sodio regulado por el voltaje de la membrana del axón, los iones aparecen localmente en la superficie exterior procedentes de la superficie interna disminuyendo el gradiente y la concentración y atraídos por el exceso de carga negativa en el axoplasma.

El interior del axón es temporalmente de +40 mV respecto al exterior. Este cambio se llama el potencial de acción. Una vez que se generó este potencial se propaga por la membrana, en circuitos locales de corriente eléctrica, que abren los canales cercanos de sodio. El potencial de acción al desplazarse produce un impulso nervioso (Meyer, 1985).

Se dice que los estímulos que despolarizan la membrana de la neurona son excitatorios, debido a que cantidad suficiente de ellos iniciarán el potencial de acción. Algunos estímulos originan el efecto opuesto de hiperpolarización, en este caso el potencial de membrana excede la cifra del potencial de reposo -70mV. Los impulsos que causan hiperpolarización inhiben la generación de potenciales de acción, debido a que se oponen a los efectos de los estímulos despolarizantes (Zimmermann, 1993).

Regulación de la síntesis del neurotransmisor

Un botón terminal en equilibrio mantiene una polarización de su membrana y una regulación de su capacidad de síntesis del neurotransmisor o de las proteínas asociadas a la consolidación de las vesículas sinápticas, de acuerdo con las exigencias funcionales de la neurona y de su propio control metabólico sobre la disponibilidad de neurotransmisor.

El neurotransmisor puede almacenarse en vesículas sinápticas, pequeños reservorios globulares que contienen receptores en su pared exterior y permiten que el neurotransmisor se libere en sitios específicos de la terminal presináptica.

Se ha hecho la analogía de la terminal presináptica como un espacio donde las vesículas sinápticas, así como las mitocondrias y otras estructuras subcelulares, están flotando. Sólo en un lugar determinado de este espacio se localizan los sitios por donde el neurotransmisor puede liberarse hacia el exterior.

Como si las vesículas fueran huevos que sólo pudieran acomodarse en los huecos de sus cajas, que se encuentran en el piso de este espacio. Y sólo a través de los huecos de estas cajas se puede descargar el contenido hacia el exterior. En este caso, los huecos tienen receptores que reconocen los componentes de la cáscara del huevo.

La presencia de estas vesículas y de receptores en sus membranas, y de moléculas de el neurotransmisor significa que existe todo lo necesario en el interior de la terminal para sintetizar todos estos componentes, y de mecanismos para la regulación de esta síntesis y de la liberación sináptica.

La terminal presináptica tiene autorreceptores que le informan sobre los niveles del neurotransmisor en el exterior de la terminal. Si sus niveles son elevados, la terminal puede fabricar o liberar menos.

Si éstos son bajos, puede hacer lo contrario. La activación, pues, de los autorreceptores puede tener efectos de estimulación o, generalmente, de inhibición de la liberación sináptica. La membrana de la terminal presináptica también posee moléculas transportadoras del mismo neurotransmisor que ellas liberan. Es un mecanismo de recaptación que sirve no sólo para ahorrar neurotransmisor al reutilizarlo, sino también contribuye a limitar sus efectos postsinápticos.

Asumiendo esta condición, la conducción de un impulso nervioso, que rompe el esfuerzo fisiológico para el mantenimiento de la polarización, produce una significativa movilización de las vesículas sinápticas que almacenan neurotransmisores, los cuales llegan a unirse a la propia membrana plasmática; y la entrada de Ca++, como consecuencia de la despolarización, que abre los canales de Ca++, rompe la anastomosis vesícula-membrana y libera al espacio sináptico el neurotransmisor.

El aumento de la superficie de membrana que supone la ruptura de las vesículas sinápticas, es posteriormente restaurado por la pinocitosis interna, es decir, el desprendimiento interno de estas membranas que van a ser, desde luego, precursoras para la formación de nuevas vesículas sinápticas. Asimismo, el Ca++ que ha intervenido en el proceso es transportado extracelularmente por las proteínas transportadoras de Ca++ similares a la bomba de sodio-potasio, con lo que se vuelve al equilibrio en la neurona presináptica.

Liberación del neurotransmisor

Una vez que el neurotransmisor ha sido liberado al espacio sináptico, se difunde por el mismo y puede seguir las siguientes rutas:

Fijación en los lugares específicos de membrana tanto presináptica como postsináptica, que son los receptores.

Dispersión en el espacio sináptico y actuación fuera de la sinapsis como un neuromodulador. Recaptación presináptica del neurotransmisor.

Catabolización enzimática del neurotransmisor y por tanto degradación de la estructura.

Activación de receptores

Receptores postsinápticos

Las estructuras de unión del neurotransmisor en la membrana postsináptica son proteínas específicas de membrana que constituyen los receptores postsinápticos y que son la clave del reconocimiento de la liberación de neurotransmisores presinápticos.

Es decir, los receptores postsinápticos son la estructura básica para interpretar la comunicación interneuronal, constituyen, por tanto, auténticas estructuras de diferenciación neuronal a la vez que son un claro exponente de la diversidad específica.

La afinidad del neurotransmisor como ligando por el receptor postsináptico es una característica inherente a la diferenciación y especialización de las propias neuronas, hasta tal punto que un neurotransmisor determinado no produce efectos, por muy constante e intensa que sea su liberación, si la membrana postsináptica no contiene en su diferenciación los receptores específicos para ese neurotransmisor concreto.

Una vez que el receptor potsináptico y neurotransmisor se unen, aparece inmediatamente una consecuencia en la membrana postsináptica. Indudablemente, hay una alteración constitucional que puede ser suficiente para modificar los canales iónicos de polarización de esa membrana, generando rápidamente una despolarización o una hiperpolarización, lo que conllevaría un aumento de la activación o inhibición, respectivamente, de la membrana postsináptica.

Normalmente, la activación de los receptores postsinápticos por un neurotransmisor ejerce su efecto, es decir, es interpretada postsinápticamente, mediante la utilización de un neuromediador o de un segundo mensajero.

En el primer caso, lo que ocurre es que la acción neurotransmisor-receptor es indirecta y necesita de una proteína de membrana mediadora ante la modificación de su permeabilidad iónica, o lo que es lo mismo, hacia la alteración de su polarización.

En el segundo caso, bien por la neuromediación, bien por el complejo específico neurotransmisor-receptor, se activa un sistema enzimático de membrana, normalmente la adenilato-ciclasa, cuya actuación inmediata se realiza sobre el adenosín trifosfato (ATP) que se transforma en adenosín monofosfato cíclico (AMPc).

El AMPc no sólo activa la apertura de los canales iónicos sino que también conduce la información de la actividad de membrana de la que procede, hacia las estructuras somáticas y nucleares de la neurona, por lo que las consecuencias de una comunicación interneuronal pueden perfectamente trascender a mecanismos bioquímicos que impliquen cambios estructurales y/o funcionales a partir de la utilización del segundo mensajero.

Al igual que ocurría en la segunda etapa, es decir, la dependencia del Ca++ en la liberación del neurotransmisor, todavía aquí nos encontramos con una incuestionable dependencia del Ca++ que es tanto más acusada cuanto mayor es la repercusión metabólica del AMPc.

Como resultado final de esta etapa, lo que ocurre localmente es una movilización de los canales iónicos que afectan al Na+, K+, Cl- y Ca++. Como sabemos, la polarización de la membrana establece particularmente unas concentraciones de Na+ extracelular y de K+ intracelular.

Si se abre el canal de Na+, aparece una única entrada que genera automáticamente una despolarización, es decir crea un potencial postsináptico excitador. Si lo que se activa es el canal de K+, se establece una acumulación excesiva de K+ intracelular cuya consecuencia es la contraria, es decir, una hiperpolarización de la membrana y por tanto un potencial postsináptico inhibidor.

La acción sobre el canal de Cl- tiene efecto cuando la membrana está ligeramente despolarizada, en cuyo caso la apertura de este canal se opone a la aparición de un potencial postsináptico excitador.

Cuando la membrana está polarizada, cuyo resultado final es una clara electronegatividad intracelular, la apertura de un canal de Cl- no tiene mayor repercusión al reafirmar la electronegatividad, y además es rápidamente reequilibrada por difusión.

Por su parte los iones Ca++ situados extracelularmente actúan igual que los iones Na+; es decir, despolarizan la membrana y producen potenciales postsinápticos excitatorios, además de ser un potente activador enzimático.


Receptores presinápticos o autorreceptores

Es también enormemente transcendente la activación de los receptores específicos de membrana, situados en la neurona presináptica, que responden a la liberación del neurotransmisor con la misma eficacia y afinidad que los receptores postsinápticos.

Ahora bien, el resultado de este mecanismo es un servomecanismo, es decir, la autorregulación de la liberación del neurotransmisor con el fin de que la comunicación neuronal sea eficaz, ajustada y esté adecuada a los niveles de excitabilidad que han provocado los potenciales de acción en los botones terminales.

Estos receptores, a diferencia de los postsinápticos, no controlan canales iónicos. Sin embargo, sí que regulan la movilización de las vesículas, intervienen esencialmente en la disponibilidad del neurotransmisor y, por tanto, en su síntesis y en su liberación. Normalmente, su control es por retroalimentación y su activación favorece los mecanismos de inhibición presináptica que, lógicamente, se asientan en el funcionamiento de los segundos mensajeros.

Inactivación del neurotransmisor

Una vez cumplido el objetivo sináptico, es decir la comunicación a la neurona postsináptica, se produce la inactivación del neurotransmisor. El mecanismo de inactivación más importante es la recaptación presináptica, que se produce no por la utilización de receptores específicos para su fijación, sino por auténticos transportadores de membrana que vuelven a incorporarlos al espacio presináptico.

Estos transportadores de membrana actúan bien sobre el neurotransmisor íntegramente liberado y reconocido por sus receptores o bien sobre metabolitos intermediarios fruto de la acción catabólica de sistemas enzimáticos postsinápticos. Indudablemente, la recaptación o la degradación catabólica del neurotransmisor termina con la activación de los receptores de membrana y desde luego termina con la actividad de los neurotransmisores.

Difusión del neurotransmisor

La ultima etapa que podemos definir en la sinapsis es la difusión del neurotransmisor. Esto nos permite incluir el concepto de neuromodulador, que produce sus efectos a grandes distancias del lugar de secreción, y que afecta a grupos neuronales y otras áreas de intervención.

Este concepto es fundamental en la secreción de neuropéptidos más que de neurotransmisores clásicos, y aunque los propios neuropéptidos de secreción sináptica pueden actuar como auténticos neurotransmisores, la propia estructura de la molécula favorece su difusión y alejamiento de su actuación local, por lo que pueden ser considerados como neuromoduladores.

La naturaleza de la materia transmisora no es en realidad quien define el efecto postsináptico de la neurotransmisión, sino que es la naturaleza de los canales iónicos controlados por los receptores de membrana postsinápticos la que define el efecto excitatorio o inhibitorio; de ahí que podamos encontrarnos con efectos claramente inhibitorios de un determinado neurotransmisor que en su generalidad es excitatorio.

40px-Books-aj.svg aj ashton 01.svg.png
Véase También

20px-Star of life2.svg.pngRecuerda que este no es un consultorio médico.

Consulta siempre a tu doctor o profesional médico. La medicina no es una ciencia exacta y pueden existir distintas versiones y opiniones sobre un mismo tema, nosotros no favorecemos ninguna opinión sobre otra, solamente te presentamos las opciones para que hagas tus propias decisiones mejor informado/a. No te automediques.

Compruébelo aquí


Ferato es un sitio de OK Internet, conoce también: Guía Celíaca y Valor de la UF Hoy